
The DZCK Whitepaper

Abstract

This paper introduces a blockchain-based distributed ledger protocol 

called DZCK secured via a novel Proof-of-Stake-based consensus 

mechanism, enabling permission-less participation in the process of state 

transition execution, validation and addition to the global state while si-
multaneously providing strong finality guarantees for the said state tran-
sitions. The protocol is built to preserve privacy when transacting with 

the native protocol asset called DZCK and with native support of zero-

knowledge proof-related primitives on the generalized compute layer.
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1 Introduction

The notion of digital currencies deployed in a distributed network secured via
cryptographically and game-theoretically sound primitives rather than trust has
been a point of discussion in limited circles of enthusiasts for decades before be-
ing formalized for the first time by David Chaum [Cha82]. Between then and the
introduction of Bitcoin [Nak08] in 2008, numerous researchers [Cha82; LSS96;
Wei98; VCS03; Sza05] in the field attempted to propose a viable digital currency
protocol.

The first noticeable breakthrough happened with the release of the Bitcoin
whitepaper [Nak08], which ushered in a new era of research and enthusiasm
in the field. Built on top of a novel digital ledger called blockchain and secured
via a Proof-of-Work-based consensus mechanism referred to as Nakamoto con-
sensus in modern literature, inspired by the works of [DGN04] and [Bac02],
Bitcoin became the first truly decentralized digital currency, inspiring the work
on other decentralized applications, such as decentralized DNS [Nam11] and a
generalized distributed state machine [Woo21]. Soon after the release of Bitcoin,
researchers have begun uncovering numerous issues previously unbeknownst to
the creator/s1 of Bitcoin. [KCW13; ES18; GKL15; SSZ17; PSS17; Bon16]
have discovered deficiencies in the assumptions outlined in the Bitcoin whitepa-
per with regards to the consensus mechanism and the accompanying economic
model. Additionally, the paper [RS12] published by Ron and Shamir has been
the first of many to demonstrate the relative triviality of transaction graph anal-
ysis and the lack of anonymity that the Bitcoin users maintain.

The issue of excessive energy consumption required to retain the security guar-
antees of the data stored in the ledger as well as other consensus mechanism-
related protocol inefficiencies has been another point of contention for the Bit-
coin protocol. Throughout the years, multiple researchers have tackled the issue
with various solutions, the majority of which revolved around a concept of one-
vote-per-share as a substitute for one-vote-per-CPU acting as a Sybil attack
protection mechanism. The idea of Proof-of-Stake was first formalized in the
Peercoin whitepaper [KN12] and since has been expanded upon by others such
as [Ben+14b; Goo14; Mic16; But+20]. A more formal approach has been taken
by [DPS16; Kia+17; Dav+18]. The protocols referenced above belong to the
family of chain-based Proof-of-Stake mechanisms, which attempt to emulate the
Proof-of-Work-based family of mechanisms, specifically the longest chain rule.
The downside of probabilistic finality of chain-based mechanisms was tackled
by Algorand [Mic16], which utilized various novel techniques to guarantee near-
instant transactional finality (with a statistically negligible probability of a fork)
while retaining the permission-less properties of the underlying protocol. Un-
fortunately, the mechanism came with disadvantages, mainly revolving around
the committee (2000+) and certificate, attesting to the validity of the block,

1
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sizes.

Understanding the importance of anonymity, researchers began working on tech-
niques to convert Bitcoin into an anonymity-preserving protocol. The initial idea
was to utilize mixers, trusted services which combine the inputs and outputs of
multiple users into a single transaction. The downsides of the service was the
reliance on trust as well as the lack of obfuscation of the amounts involved. The
initial surge of interest in anonymity-preserving digital currencies was followed
by the publications of [Ben+14a; Sab13; Hop+21; Max15; NMM16; Poe16;
Fau+18; Jiv19; Bun+19], which took differing approaches to the problem with
differing outcomes. The resulting rise of interest, has seen multiple projects,
such as Monero and Zcash, rise in popularity with anonymity preservation be-
ing the main selling point of the aforementioned protocols.

Additionally, the inquiry into the expansion of the smart contract functionality
has begun since the introduction of Bitcoin. Originally proposed in [Sza96] and
expanded upon in [Sza97], smart contracts represent a set of codified rules auto-
matically encforced without the need for trusted intermediaries. While Bitcoin’s
Script language is capable of facilitating limited smart contract functionality, it
is not Turing complete and is unable to facilite arbitrary computations with-
out off-chain solutions such as [Ler19]. The idea of expanding Bitcoin’s limited
scripting functionality was originally proposed by [But13], later to be formalized
as [Woo21]. Ethereum includes a custom-designed Turing complete Virual Ma-
chine called Ethereum Virtual Machine (EVM), which supports [Eth21], [Tea19]
as well as other programming languages and is currently considered to be the
default virtual machine standard for blockchain-related applications.

In this paper we present DZCK , a blockchain-based distributed ledger 

protocol secured via a novel Proof-of-Stake-based consensus mechanism, en-
abling permission-less participation in the process of state transition execution,
validation and addition to the global state while simultaneously providing strong 

finality guarantees for the said state transitions. The protocol is built to pre-

serve privacy when transacting with the native protocol asset called DZCK and 

with native support of zero-knowledge proof-related primitives on the gener-

alized compute layer. DZCK protocol is conceptually split into two non-

overlapping layers: native protocol asset (i.e. DZCK ) and general compute 

layer. Though both share the same state space, DZCK can be conceptualized 

as a separate layer due to the numerous privileges the asset retains within the 

DZCK protocol, such as being a sole asset permitted to be utilized for 

staking and for computational cost reimbursement for transaction execution 

costs as well as the contract accommodating DZCK -related logic, eponymously

 called DZCK Contract, being the singular entry point to state transition initia-

tion. [Mah20] expands on the token economics of DZCK and the DZCK  

protocol economic model as a whole.
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1.1 Our Contributions

Our contributions include the following:

• We formalize a novel privacy-preserving leader extraction procedure called
Proof-of-Blind Bid. Proof-of-Blind Bid belongs to the family of Private
Proof-of-Stake mechanisms such as [Ker+19; GOT19] and forms the basis
to Segregated Byzantine Agreement (SBA from hereon) consensus mecha-
nism.

• We introduce a novel consensus mechanism called SBA. SBA is permission-
less committee-based Proof-of-Stake protocol which provides near-instant
transactional finality guarantees with a negligible probability of a fork.

• We present a UTxO-based privacy-preserving transaction model called
Phoenix. Phoenix expands on the transaction model proposed in [Hop+21]
to enable the users to spend non-obfuscated outputs confidentially, a re-
quirement for quasi-Turing complete systems where the final cost of the
execution is unknown until the termination of said execution.

• We introduce a hybrid privacy-preserving transaction model called Zedger.
Zedger is a model created to comply with the regulatory requirements of
security tokenization and lifecycle management. Zedger utilizes a novel
structure called Sparse Merkle-Segment Trie as a basis for private memory
representing a user account, in which the respective owner of the said
account can log the balance changes per segment while only revealing the
change to some Sparse Merkle-Segment Trie root publicly.

• We propose a WebAssembly [Ros21]-based Virtual Machine called Rusk
VM. Rusk VM includes native zero-knowledge proof verification function-
ality as well as support for efficient creation of Merkle Tree structures.

• We formalize the concrete version of the protocol as DZCK proto-
col.

2 Overview

The paper is organized as follows. Section 3 outlines the main use cases for the 

DZCK protocol. We define the notation utilized in the paper in Section 4.
Section 5 describes an idealized abstract version of the protocol PEideal. We 

delve into the cryptographic fundamentals that make up the building blocks for 

the concrete version of the protocol in Section 6. We define the building blocks 

for the concrete version of the protocol in Section 7. Section 8 formalizes the
concrete version of the protocol PChain

real
A. In Section 9, we discuss the related

works and conclude our thoughts in Section 10.
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3 Use Cases

While a protocol enabling arbitrary on-chain computation such as DZCK 
can act as a host of a virtually unlimited number of unique applications,

we designed DZCK with a specific set of use cases in mind. More specifi-cally,

DZCK was primarily conceived with regulatory compliant security 

tokenization and lifecycle management in mind. The details of the security to-
kenization standard are beyond the scope of this paper. We encourage readers 

to refer to [Mah21] for an in-depth look into this Confidential Security Contract 

(XSC) Standard. Additionally, a Confidential Token Standard was created to 

enable seamless interaction between non-regulated and regulated assets within 

the protocol, without compromising on the privacy of the interacting users.

This also enables the DZCK protocol to act as a privacy-preserving 

sidechain for any other existing Layer 1 protocol via trusted or trust-minimized 

interoperability solutions [Zam+19].

4 Notation

This section defines the common notation utilized throughout this paper. Some
standard notations are not denoted for the sake of brevity.

A leftarrow and alteranrively rightarrow symbol denotes an assignment func-
tion, e.g. A ← B or B → A stands for the assignment of B to A. The equiva-
lency function is denoted with a = symbol, e.g. A = B stands for A is equivalent
to B. A mapsto symbol defines a mapping function, e.g. A 7→ B, where B is
mapped to A. The || symbol denotes an appension of two byte sequences, e.g.
a||b denotes b being appended to a. / symbol denotes division without the re-
mainder, e.g. 6/4 = 1, while % symbol denotes the remainder of the rounded
division, e.g. 6%4 = 2.

We denote a tuple containing 1 or more element with round brackets, e.g.
Tuple ← (). A set is defined with a Set[] function, which denotes the ele-
ment type the set is comprised of, e.g. ExampleSet ← Set[bool]. A list is
defined with a List[] function, which denotes the element type the list is com-
prised of, e.g. ExampleList ← List[bool] stands for a list comprised of bool
elements. The difference a set and a list is that a set can only be comprised
of unique elements whereas a list can be comprised of identical elements. We
define a mapping functions Mapping[] which maps a key key to a value value, i.e.
ExampleMap← Mapping[byte32 7→ bool]. A binary sequence is defined with a
BinarySeq[N] funtion, where N (N > 0) is the number of bytes the defined
binary sequence is comprised of, e.g. ExampleBinarySeqF ← BinarySeq[32]
stands for a binary sequence comprised of 32 bytes. A byte sequence is de-
fined as string of bytes. The member elements of the tuple, list, set, binary
sequence and byte sequence can be obtained by providing the index to their
position in the structure (where index always begins with 0), e.g. bool ←
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ExampleList[2]. A structure name enclosed in || defines the cardinality of the
said structure, i.e. |ExampleList| = 4. A key provided as a substitute for an
index in case of a mapping would return the value corresponding to the said
key, e.g. bool← ExampleMap[byte32].

We denote a Merkle Tree structure with a MerkleTree[] function, which de-
fines the element type the Merkle Tree leaves are comprised of and the depth
of the Merkle Tree, e.g. ExampleTree ← MerkleTree[bool, 32], where 32 is the
depth of the Merkle Tree of arity 2 (i.e. LeafCount(ExampleTree) = 232). A
Merkle Tree with a superscript capital R defines the root of the Merkle Tree,
e.g. ExampleTreeR. We define LeafCount() as a function that returns the maxi-
mum number of leaves the said Merkle Tree can have. Function O() takes the
Merkle Tree root ExampleTreeR and the Merkle Tree path from a specified leaf
exampleLeafP and returns a true is the provided path is a valid opening to the
specified root or false otherwise, i.e. bool← O(ExampleTreeR, exampleLeafP ).

We denote Generators to be a mapping, which maps the hash of secret secretHash
to a tuple comprised of the cryptographic commitment to the bid balance cbid,
bid eligibility height hbidEligibility and bid expiration height hbidExpiration, i.e.:

Generators← Mapping[secretHash 7→(cbid, hbidEligibility, hbidExpiration)].

Additionally, we denote Provisioners to be a mapping, which maps the BLS
public key pkBLS to a tuple comprised of the stake balance bstake, bid eligibility
height hstakeEligibility and bid expiration height hstakeExpiration, i.e.:

Provisioners← Mapping[pkBLS 7→ (bstake, hstakeEligibility, hstakeExpiration)].

We assume that there exist functions TotalActiveStake(), TotalHonestStake() and 

TotalByzantineStake() which return the total amount of DZCK staked by the 

active (the owners of the bids/stakes for which the current block height is not 

smaller than hbidEligibility/hstakeEligibility and smaller than hbidExpiration/hstakeExpiration)

Generators/Provisioners, the total amount of DZCK staked by the honest Gen-

erators/Provisioners and the total amount of DZCK staked by the Byzantine 

Generators/Provisioners (NOTE: the three functions exist only in the theoret-
ical model [aside from TotalActiveStake() applicable only to Provisioners] and 

do not exist in the concrete instantiation of the protocol).

F denotes a function. F with a superscript lettering defines name of the given
function, e.g. FFunction stands for a function named Function.

Greek letter σ denotes a signature. σ with subscript lower case lettering de-
fines the signature scheme utilized to generate said signature, e.g. σschnorr, is a
signature generated with the Schnorr signature scheme. Greek letter ν denotes
a nullifier. ν with a subscript capitalized letter defines a nullifier corresponding
to the given structure, e.g. νI , is the nullifier of the identity I. Greek letter π de-
notes a zero-knowledge proof. π with a subscript lower case lettering defines the
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name of the given zero-knowledge proof, e.g. πplonk stands for a zero-knowledge
proof named PLONK. π with a superscript lower case lettering defines the
name of function being proven, e.g. πsend stands for a zero-knowledge proof
capable of satisfying the requirements of function send.

5 Abstract Protocol

The goal of this section is to establish the protocol functionality requirements
and formalize a real-life protocol based on the said functionality in the later
sections of the paper. Specifically, the protocol has to be capable of supporting
the following functionalities:

1. privacy-preserving leader extraction procedure,

2. permission-less access to the consensus mechanism,

3. near-instant transactional finality,

4. transactional confidentiality,

5. quasi-Turing complete state transition function with native zero-knowledge
proof verification capabilities.

We define an idealized abstract protocol as P ideal
E , instantiated under environ-

ment E . We assume that E is responsible for handling communications with the
participants of P ideal

E . E is assumed to follow the protocol rules, have unbounded
computational resources and be ’omniscient’ (i.e. E has access to the internal
state of every participant of P ideal

E ).

An interaction between protocol participant and E is handled via request-response
communication method commonplace amongst distributed system protocol lit-
erature. We assume that the communication channel between protocol partici-
pant i and E is secure. To initiate a request, i is to communicate a message Req
to E , which, in its turn, would respond with a message Res. Specifically, P ideal

E
is instantiated with support for the following Req and Res message types:

1. REGISTER, a message type responsible for requesting E to create a new
key pair (sk, pk) and register a new account.

2. SEND, a message type responsible for requesting E to send a defined num-
ber of the native tokens to a defined public key pkr of the receiver.

3. CREATE, a message type responsible for requesting E to create an appli-
cation Application. We assume that the applications can have arbitrary
functionality and can interact with one another, with their state accessible
to any protocol participant, with an exception of data related to a specific
set functionalities such as asset transfers, voting, dividend claims, etc.
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4. CALL, a message type responsible for requesting E to execute a call to a
defined application Application.

Additionally, we assume that each request is immediately executed by E with
the outcome becoming irreversible as soon as the execution is completed.

With that we have defined an abstract protocol capable of facilitating the func-
tionality outlined in the beginning of the section.

6 Cryptographic Primitives

6.1 Hash Function

H() is a hash function which takes message m of an arbitrary size as an input
and produces constant-size output x:

x← H(m).

To be considered cryptographically secure, hash functions are required to comply
with the following requirements:

1. Pre-image resistance. The probability of a Probabilistic Polynomial-
Time (PPT) Adversary A finding m given x (i.e. m ← H−1(x)) is negli-
gible.

2. Second preimage resistance. The probability of A finding m2 given
m1, where H(m1) = H(m2) and m1 6= m2, is negligible.

3. Collision resistance. The probability of A finding m1 and m2, where
H(m1) = H(m2) and m1 6= m2, is negligible.

Specifically, P real
Chain,A is instantiated with Blake2b hash function [Aum+14] as

Hblake2b for general-purpose computations and with Poseidon hash function
[Gra+19] as Hposeidon for zero-knowledge proof friendly computations.

6.2 Merkle Tree

Merkle Tree [Mer80] is a tree-like cryptographic structure which is constructed
through recursive hashing of the child nodes beginning with leaf nodes and end-
ing with a single root node. In order to prove the inclusion of a certain leaf node
in a Merkle Tree merkleTree, prover P has to provide verifier V with the Merkle
Tree path opening the leaf node N , NP , which includes the aforementioned leaf
node as well as the neighboring node for every level of the tree.

Specifically, P real
Chain,A is instantiated with Merkle Trees computed with Hblake2b,

denoted with a blake2b subscript, e.g. merkleTreeblake2b, for general-purpose
structures and with Hposeidon, denoted with a poseidon subscript, e.g.
merkleTreeposeidon, for zero-knowledge proof friendly structures.
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6.3 Elliptic Curve

Elliptic curves are algebraic structures constructed over finite fields. The secu-
rity of elliptic curves relies on the hardness of elliptic curve discrete logarithm
problem (ECDLP) The goal of ECDLP is to find a scalar s, given points G and H
on the curve, such that s·G = H, where · is the scalar multiplication in group G.

Specifically, P real
Chain,A is instantiated with JubJub [Hop+21] for general-purpose

computations and with BLS12-381 [BLS02] for pairing computations.

6.4 Stealth Address Scheme

Stealth address is a one-time public key generated via a scheme based on Diffie-
Hellman Key Exchange (DHKE) [DH76], proposed in [Sab13]. The scheme
conceives three key pair types:

1. secret spend key, ssk ← (a, b); where a and b are randomly generated
scalars and represent a pair of secret keys.

2. public spend key, psk ← (A,B); where A = a ·G (G is a generator of a
JubJub group G) and B = b ·G are compact representations of points on
elliptic curve and represent a pair of public keys.

3. view key, vk ← (a,B); where a is a randomly generated scalar and
B = b · G is a compact representation of a point on elliptic curve and
represent a secret and public key respectively.

To generate a one-time key (i.e. stealth address), the receiver R is required to
share his public spend key, psk, with the sender S, after which S is to proceed
with following steps:

1. Generate a random scalar r.

2. Compute a one-time public key pk ← Hposeidon(r ·A) ·G+B.

3. Compute R← r ·G and propagate (pk,R) to receiver R.

To detect a message addressed to R, R is required to scan through the incoming
messages using view key, vk, to check whether pk = Hposeidon(R ·a) ·G+B holds
true for one of the transactions.

To compute the spend key, sk, corresponding to the one-time public key, pk, R
is required to complete the following computation using his secret spend key,
ssk: sk ← Hposeidon(R · a) + b.

6.5 Encryption Scheme

E() is an encryption function which takes plaintext m and encryption key ke as
an input and produces ciphertext e as an output:

c← E(m, ke).
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To decrypt, decryption function D() is utilized which takes ciphertext e and
decryption key kd as an input and produces plaintext m as an output:

m← D(e, kd).

For symmetric encryption, encryption and decryption keys are equivalent (i.e.
ke = kd), whereas for asymmetric encryption encryption and decryption keys are
different, though the two share a mathematical relationship (such as ke = kd ·G,
where G is a generator of group G).

Specifically, P real
Chain,A is instantiated with ElGamal encryption scheme [El 85]

as Eelgamal, Delgamal for asymmetric encryption and a permutation-based AEAD,
concretely setup with Poseidon-SpongeWrap [Kho20] as Eposeidon, Dposeidon for
symmetric encryption.

6.6 Commitment Scheme

C() is a commitment scheme which takes value v and a random blinder b as an
input and produces commitment c as an output:

c← C(v, b),

where
C(v, b) = v ·G+ b ·H,

where G and H are two non-identical generators with an unknown mathemati-
cal relationship (i.e. s ·G =? H) for JubJub group G.

Commitment scheme enables prover P to commit to a value privately while
having a capability to reveal the value P has committed to at a later point.
Formally, a secure commitment scheme must be hiding (the probability of A
extracting value v from the commitment is negligible) and binding (the proba-
bility of A finding another value v and blinder b capable of opening commitment
c is negligible).

Specifically, P real
Chain,A is instantiated with Pedersen commitment scheme [Ped91]

as C.

6.7 Signature Scheme

ΣS() is a a signature scheme which takes message m and secret key sk as an
input and produces signature σ as an output:

σ ← ΣS(m, sk),

where σ can be verified as:

ΣV (σ,m, pk) = true,
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where pk = sk ·G (G is a generator for a group G).

Signature scheme enables prover P to authenticate a message by binding his
secret key to the message in a verifiable procedure. To process a long message,
a cryptographic hash function is deployed. To be considered cryptographically
secure, signature schemes are to adhere to the following requirements:

1. Unforgeability. The probability of A being able to reproduce signature
σ given message m is negligible.

2. Message binding. The probability of A being able to find message
m2 given message m1 to produce σ1 = σ2 where σ1 ← ΣS(m1, sk) and
σ2 ← ΣS(m2, sk) is negligible.

3. Non-malleability. The signature value can not be modified to another
value valid for the same message.

Specifically, P real
Chain,A is instantiated with Schnorr signature scheme [Sch95] as

Σschnorr for general-purpose signatures and with BLS signature scheme as Σbls

[BLS01] for aggregatable signatures.

6.8 Zero-Knowledge Proof Scheme

ΠP () is a zero-knowledge proof scheme which takes public values p, private
values w and prover key pk as an input and produces proof π as an output:

π ← ΠP (p, w, pk),

where π can be verified as:

ΠV (p, π, vk) = true,

where vk is a verifier key.

To be considered cryptographically secure, zero knowledge proof of knowledge
protocol has to adhere to the following requirements:

1. Completeness. An honest prover P succeeds in convincing the verifier
V of the statement.

2. Soundness. The probability of A proving an invalid statement to verifier
V is negligible.

3. Zero-knowledgeness. The proof reveals no information other than the
fact that the statement is true.

Specifically, P real
Chain,A is instantiated with PlonK [GWC19] zero-knowledge proof

scheme as Πplonk.

Additionally, P real
Chain,A is instantiated with modified Schnorr proof scheme [Sch95]

as Πschnorr for discrete logarithm relationship proofs.
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7 Building Blocks

7.1 Segregated Byzantine Agreement

SBA is the consensus mechanism utilized to secure the DZCK protocol.
SBA is a permission-less Proof-of-Stake-based mechanism with statistical final-
ity guarantees. The mechanism segregates the consensus participants into two 

distinct roles:

1. Generator. Generators are responsible for proposing blocks. In other
words, Generators perform a similar role to leaders from classic distributed
systems literature. Generators are extracted through the privacy-preserving
leader extraction procedure called Proof-of-Blind Bid.

2. Provisioner Provisioners are responsible for validating and finalizing the
proposed blocks. In other words, Provisioners perform a similar role to
replicas from classic distributed systems literature. Provisioners are ex-
tracted into the committees through the committee extraction procedure
called deterministic sortition.

The mechanism is secure under the honest majority of money assumption, mean-

ing that for n DZCK being the cumulative amount staked eligible to participate 

in the consensus, the ratio of h DZCK under control of honest participants must 

hold as h > n − f , where f is the ratio of DZCK under the control of Byzan-
tine participants and h ≥ 2f . Specifically, we formalize the honest majority of 

money assumption for the DZCK protocol as:

TotalActiveStake(Generators) ∪ TotalByzantineStake(Generators)

TotalActiveStake(Generators) ∪ TotalHonestStake(Generators)
>

1

3
,

and

TotalActiveStake(Provisioners) ∪ TotalByzantineStake(Provisioners)

TotalActiveStake(Provisioners) ∪ TotalHonestStake(Provisioners)
>

1

3
.

Additionally, we assume that there exists a probabilistic polynomial-time (PPT)
Adversary A capable of corrupting a consensus participants with a maximum 

control of f DZCK . A is assumed to be a mildly adaptive Adversary, meaning
 that corruption takes place ∆corrupt after A has selected a participant to corrupt
.Concretely, ∆corrupt > epoch.

The network conditions are assumed to be synchronous, meaning that there ex-
ists a publicly known ∆delay defining the maximum delay by which the message
propagation can be delayed to the honest participants of the consensus. In other
words, after the initial propagation time of tinitPropagation, the message will be de-
livered to every honest consensus participant no later than tinitPropagation +∆delay.
We additionally assume that every honest participant will receive the messages
in the order that they were propagated.
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The consensus is divided into epochs, rounds and steps. An epoch is defined
as a set of rounds, concretely as epoch ≥ c × round, where c is denoted as
(f)c ≤ 2−100, for the duration of which the Generators and Provisioner sets re-
main unchanged and the epoch seed seedepoch corresponding to the epoch is
utilized. A round is defined as a synonym to block height in the context of the
consensus, with every round corresponding to a unique block in Chain. A step
denotes a consensus step. Specifically, each consensus round is comprised of
iterations (i.e. loops) of 4 step.

The consensus mechanism is comprised of three phases:

1. Generation phase, utilizing Proof-of-Blind Bid to extract a leader who is
to forge and propagate a candidate block to the consensus participants.

2. Reduction phase, based on [TA84], the two-step phase is responsible for
the agreement on a single candidate block to be finalized.

3. Agreement phase, an asynchronous phase running in parallel with the two
previous phases and responsible for the finalization of a candidate block.
Specifically, an agreement vote is initiated after the successful termination
of the Reduction phase.

Definition. A consensus protocol has statistical finality when the probability
of a fork during a single execution round is negligible.

Proof. In case of SBA, the fork can be produced by ”double-voting” during
the three consequent steps of the execution round, specifically two Reduction
steps and an Agreement step). A ”double-vote” occurs when a node votes for
two separate candidate blocks in the same voting step. Taking the node as-
sumptions defined above into account, a ”double-vote” can only be produced by
a Byzantine node, meaning that in order to produce a fork, an Adversary has
to receive the control of the supermajority of the cumulative committee stake
size in three successive consensus steps. The probability of the aforementioned
event happening can be defined below.

Failure Rate

The failure rate is the probability of the safety guarantees of the protocol step
(exluding Generation phase) being breached. In particular, the failure rate
indicates the probability of an Adversary A obtaining a supermajority in a
committee. The probability function is outlined in a formula below, where
N ← |committeeround,step| is the committee size, τ ← votethreshold is the threshold
of votes in a committee required to proceed to the next step and h is the ratio
of the honest participants:
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N∑ (
N
k

)
· (1− h)k · hN−k

k=floor(τ ·N+1)

=
N∑ N !·(1−h)k·hN−

k=ceil(τ ·N)

k

≤ ffailurek!·(N−k)!
step

Figure 1: The formula calculating the failure rate per step fs
step.

The probability of an Adversary A successfully creating a fork is equal
to the probability of an Adversary A obtaining a supermajority in the two
successive Reduction steps (([Pr]failureReduction)2 ≤ (ffailure

step )2) and a Agreement step
(([Pr]failureAgreement ≤ ffailure

step )) or ([Pr]failureReduction)2 × [Pr]failureAgreement = (ffailure
step )3 ≤ ffailureround.

Liveliness Rate

The liveliness rate indicates the probability of an honest majority being obtained
in a committee. The probability function is outlined in a formula below:

floor(τ ·N
1−

)∑ floor(τ ·N(
N
k

)
· hk · (1− h)N−k = 1

k=1

−
)∑ N !·hk·(1−h)N−

k=1

k

≤ flivelinessk!·(N−k)!
step

Figure 2: The formula calculating the failure rate per step fl
step.

The probability of a successful consensus round termination is equal to the
probability of a supermajority obtained in the successive Generation ([Pr]livelinessGeneration ≥
h), two Reduction (([Pr]livelinessReduction)2 ≥ (fliveliness

step )2) and Agreement ([Pr]livelinessAgreement ≥
fliveliness
step ) steps or [Pr]livelinessGeneration×([Pr]livelinessReduction)2× [Pr]livelinessAgreement = h×(fliveliness

step )3 ≤
fliveliness
round .

7.1.1 Proof-of-Blind Bid

Proof-of-Blind Bid (PoBB from hereon) is a novel privacy-preserving leader
extraction procedure. PoBB is utilized in the Generation phase to probabilisti-
cally extract the leader for the round who is responsible for forging the candidate
block proposal for the respective round.

PoBB utilizes a Merkle Tree structure comprised of the bids. The bids contain 

the obfuscated amounts of DZCK being staked along with accompanying data,
which permits the prospective round leaders to prove the validity of their bids 

in zero-knowledge without revealing their identities or amounts being staked.
Specifically, we define the Merkle Tree as:

bidTreeposeidon ← MerkleTree[bid],
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where bid is:

bid←(c, secretHash, nonce, secretenc, R, pk, heligibility, hexpiry).

c is defined as the commitment to the amount of DZCK being staked, secretHash 

is the hash of secret integer secret utilized to compute the extraction score, nonce 

is utilized for the encryption of secretenc, secretenc is the secret encrypted to the 

derivative of pk, (R, pk) is the stealth address and (heligibility, hexpiration) defines 

the height after which the bid becomes eligible to participate in the consensus 

and during which the bid expires respectively.

Assuming that for round round the consensus participant i has an eligible bid
bidi (i.e. heligibility ≤ round < hexpiration) for which i knows the commitment open-
ing (v, b) (i.e. bidi.c = C(v, b)) and the secret corresponding to secretHash (i.e.
secretHash = Hposeidon(secret)), i is capable of computing the score score deter-
mining whether or not i is the leader of round round, step step (leaderround,step).
Specifically, we compute the score in the following steps:

1. y ← Hposeidon(secret||Hposeidon(bidi)||round||step)

2. x1 ← y/2128

3. y′ ← y%2128

4. scoreround step ← (v × 2128)/y′, where z ← (v × 2128) if y′ = 0 and v, is the
commitment opening corresponding to bidi.c

If the scoreround step ≥ scorethreshold, then i, is probabilistically presumed to be the
leader for round round and step step. We assume that there exists a function
that is capable of dynamically computing the score threshold for every epoch.
The details of the concrete instantiation of the aforementioned function are
beyond the scope of this paper. The function can be defined as:

scorethreshold ← Threshold(Generators,λ),

where λ defines the average number of leaders to be extracted per round-step
combination.

To be capable of verifying the validity of the scoreround,step generated by i, the
consensus participant j is required to receive the following tuple:

(scoreiround,step, seediround,step, πplonk
score ),

where seedround step is the seed for round, step round-step combination and πplonk,
score

is the zero-knowledge proof attesting to the validity of the score generation. To
pass the verification, πplonk

score is required to satisfy the following steps:

1. O(bidTreeR, bidPi ),

2. r ≥ bidi.heligibility,
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3. r < bidi.hexpiration,

4. bidi.c = C(v, b),

5. 0 ≤ v < 264,

6. bidi.secretHash = Hposeidon(secret),

7. seedr,s = Hposeidon(secret||stateglobal.seede||round||step),

8. y = Hposeidon(secret||Hposeidon(bidi)||round||step),

9. y = x1 × 2128 + y′,

10. ((x1 < b|Fp|/2128c)∧(yprime < 2128))∨((x1 = b|Fp|/2128c)∧(y′ < |Fp| mod
2128)), where Fp defines the prime field,

11. x2 < y′,

12. score < 2120,

13. score× y′ + r2 = v128.

7.1.2 Generation Phase

Generation phase is utilized in SBA to forge a candidate block for every iter-
ation of the consensus. If, after successful termination of the PoBB execution,
a Generator has obtained a score greater or equal to the predefined threshold,
then the said Generator can proceed to forge and propagate the block. Specifi-
cally, we define the Generation function as:

Function FGeneration

FGeneration(bidi, v, b, secret):

1. (score, seedround,step, π
score
plonk)← FPoBB(bidi, v, b, secret),

2. If score ≥ scorethreshold,

3. candidateBlock← ForgeCandidateBlock(score, seedround,step, π
score
plonk),

4. FPropagate(score, πscore
plonk, candidateBlock).

where ForgeCandidateBlock() is function responsible for the generation of a
candidateBlock.
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7.1.3 Reduction Phase

The Reduction phase utilized in SBA to reach agreement on a single candidate
block to be finalized, is based on [TA84], which reduces the multivariable inputs
to a single variable output before proceeding to Binary Agreement. However,
unlike BBAF [Mic17], the Turpin and Coan algorithm is not utilized as a reduc-
tion function for the Binary Agreement protocol. Reduction phase is a two-step
phase defined as:

Function FReduction

FReduction(stakei, skBLS, candidateBlocki):

1. Start timer for step step, i.e. timerround,step ← StartTimer(REDUCTION)

2. If stakei.pkBLS ∈ Provisioners,

3. If stakei.heligibility ≤ round < stakei.hexpiration.

4. If stakei.pkBLS ∈ committeeround,step, where committeeround,step ←
DeterministicSortition(),

5. FPropagate(σBLS, pkBLS, round, step,Hblake2b(candidateBlocki)), where
σBLS ← ΣSBLS(Hblake2b(candidateBlocki)||round||step, skBLS),

6. If votethreshold messages for a single any candidate block candidateBlock
are received before the expiration of timerround,step set candidateBlocki ←
candidateBlock, otherwise set candidateBlocki ← ∅,

7. Start timer for step step + 1, i.e. timerround,step+1 ←
StartTimer(REDUCTION),

8. If stakei.pkBLS ∈ committeeround,step + 1, where committeeround,step + 1 ←
DeterministicSortition(),

9. FPropagate(σBLS, pkBLS, round, step + 1,Hblake2b(candidateBlocki)),

10. If votethreshold messages for any single candidate block candidateBlock are
received before the expiration of timerround,step+1 set return candidateBlock,
otherwise return candidateBlock← ∅.

where StartTimer() is a function responsible for the instantiation of a timer
for a corresponding step, committeeround,step is a set comprised of Provisioner
public keys pkBLS who have been extracted into a committee for round and step,
DeterministicSortition() is a function responsible for the extraction of committee
members for round and step and votethreshold is a threshold of committee votes
required to reach a quorum for round and step.
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7.1.4 Agreement Phase

Agreement is an asynchronous phase running in parallel with the main consen-
sus loop. Successful termination of the phase indicates that a candidate block
for round round has been finalized. Agreement phase is defined as:

Function FAgreement

FAgreement():

1. If votethreshold messages for any single candidate block candidateBlock are
received for step step (if step mod 4 = 0), then return candidateBlock

7.1.5 Main Consensus Loop

The main loop for SBA is defined as: where StartThread() is a function respon-

Algorithm 1 Main Consensus Loop

1: chain = Chain
2: round = 1
3: while do
4: step = 1
5: thread = StartThread(FAgreement)
6: while Running(thread) do
7: timerround,step = StartTimer(GENERATION)
8: FGeneration(bidi, v, b, secret)
9: if a valid candidateBlock is collected before the expiration of

timerround,step then
10: candidateBlocki = candidateBlock
11: else
12: candidateBlocki = ∅
13: end if
14: step = step + 1
15: candidateBlock← FReduction(stakei, skBLS, candidateBlocki)
16: step = step + 2
17: if candidateBlock 6= ∅ then
18: σBLS = ΣSBLS(Hblake2b(candidateBlock)||round||step, skBLS)
19: FPropagate(σBLS, round, step,Hblake2b(candidateBlock))
20: end if
21: step = step + 1
22: end while
23: chain.append(candidateBlock)
24: round = round + 1
25: end while
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sible for starting a new concurrent execution thread and Running() is a function
responsible of notifying whether the concurrent thread is being executed or has
terminated.

7.2 Phoenix

Phoenix is a UTxO-based transaction model which expands on the model pro-
posed in [Hop+21] to enable the users to spend non-obfuscated outputs confi-
dentially, a requirement for quasi-Turing complete systems where the final cost
of the execution is unknown until the termination of said execution. Phoenix
avoids the possibility of transaction deanonymization arising from the limited
anonymity sets [Kum+17; Mös+18] of ring-signature-based models and from the
miner behaviour as well as the relationships between transparent and shielded
transactions [Que17; Kap+18; Zha+20; BF19] in [Hop+21] (NOTE: Zcash has
enabled shielded block reward payments recently, decreasing the attack surface
on the anonymity set). The theoretical anonymity set size for Phoenix is equiv-
alent to the number of outputs created since the genesis block. In other words,
the anonymity set grows as more transactions are added to the blockchain.

On an abstract level, a Phoenix transaction is comprised of a set of inputs
Inputs← Set[Input], a set of outputs Outputs← Set[Output] and zero-knowledge

proof attesting to the correctness of said transaction, πspend
plonk . The input is defined

as:
Input← (ν, anchor),

where ν is a unique identifier of an input called nullifier utilized to prevent
double-spending of the outputs and anchor is the root of the Merkle Tree com-
prised of notes with which the spending proof for the said input was computed.
1 ≤ |Inputs| ≤ 4 is required to hold. We define the output as:

Output← note,

where note is a structure defined as:

note← (type, c, data, R, pk).

type stands for the note type, c is the commitment to value of the note, data is
a type-dependent entry and R, pk represent the stealth address identifying said
note. We define two note types as transparent and obfuscated. If the note is
transparent (notetransparent), then notetransparent.type = 0 and notetransparent.data =
v, where v is the value of the commitment notetransparent.c ← C(v, b) and b = 0.
Otherwise (i.e. noteobfuscated), noteobfuscated.type = 1 and noteobfuscated.data =
(denc), where denc are the encrypted value and blinder of the commitment
noteobfuscated.c to the derivative of noteobfuscated.pk kenc utilized for encryption,
i.e. denc ← Eposeidon(v||b, kenc). 0 ≤ |Outputs| ≤ 2 is required to hold.
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We define noteTreeposeidon as a Merkle Tree structure utilized to store output
notes as leaves. Specifically, noteTree is formalized as follows:

noteTreeposeidon ← MerkleTree(note,34).

Additionally, nullifierSet is defined as a set responsible for storing nullifiers cor-
responding to the spent outputs, i.e. nullifierSet← Set[ν].

The zero-knowledge proof attesting to the correctness of the transaction πspend
plonk

is required to satisfy the following conditions:

1. For every member of Inputs, a Merkle Tree path corresponding to the
respective note noteP is required to be a valid opening to the corresponding
anchor, i.e. ∀Input ∈ Inputs[O(Input.anchor, noteP ) = true].

2. For every member of Inputs, a valid Schnorr proof πschnorr of the respective
note is required to be provided, i.e. ∀Input ∈ Inputs[ΣVschnorr(pk

′, πschnorr, note.pk) =
true].

3. For every member of Inputs, a nullifier ν is required to correspond to the
hash of the respective nullifier-deriving public key pk′ and note position
notepos in the noteTree, i.e. ∀Input ∈ Inputs[ν = Hposeidon(pk

′||notepos)].

4. For every member of Inputs, a commitment opening tuple (v, b) is required
to be a valid opening of the corresponding commitment c of a respective
note, i.e. ∀Input ∈ Inputs[c = C(v, b)].

5. Verify that the sum of v corresponding to the opening of the commitment
for the corresponding note of every member of Inputs is equal to vin, i.e.
vin =

∑
v.

6. For every member of Input, commitment opening v corresponding com-
mitment c of the respective note is required to be within the valid range,
i.e. ∀Input ∈ Inputs[0 ≤ v < 264].

7. For every member of Outputs, commitment opening tuple (v, c) is required
to be a valid opening of the corresponding commitment c of the respective
note, i.e. ∀Output ∈ Outputs[note.c = C(v, b)].

8. For every member of Outputs, commitment opening v corresponding com-
mitment c of the respective note is required to be within the valid range,
i.e. ∀Output ∈ Outputs[0 ≤ v < 264].

9. Verify that the sum of v corresponding to the opening of the commitment
for the corresponding note of every member of Outputs is equal to vout,
i.e. vout =

∑
v.

10. The result of vin being substracted from vout is required to be 0, i.e.
vout − vin = 0
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7.3 Zedger

Zedger is a hybrid privacy-preserving transaction model created to comply with
the regulatory requirements of security tokenization and lifecycle management.
In Zedger, an expanded account model is utilized to track user balances and a
Phoenix-like UTxO model is utilized to facilitate user-to-user transfers.

Below, we formalize the requirements for a privacy-preserving transaction model
capable of complying with the requirements of security tokenization:

1. There can only exist 1 account per user.

2. Only whitelisted users are permitted to transact.

3. The receiver is required to explicitly approve incoming transactions.

4. The transferred asset amount should be accounted for in the sender’s
balance until the receiver has explicitly approved the transaction.

5. The account is required to log every balance change since the creation of
the account.

6. The account is required to log transactional, voting and dividend-eligible
balances separately.

7. The asset operator-appointed party is required to be capable of recon-
structing the capitalization table for any snapshot point.

Since pure UTxO-based models are incapable of satisfying the requirements
outlined above and neither do the previous attempts at creating a privacy-
preserving account model [Fau+18; Gua+20], we have formalized Zedger.

Zedger introduces a novel cryptographic structure called Sparse Merkle-Segment
Trie (SMST from hereon), which forms the basis for the account storage. SMST
combines two structures known as a Sparse Merkle Tree [DPP16] and a Seg-
ment Tree [BW80] into a single structure. Specifically, SMST utilizes the Sparse
Merkle Tree cryptographic accumulator property and the Segment Tree’s capa-
bility of storing information about the intervals. Each node in the SMST is
defined as:

node← (balancemax, balancetransactional, balancevoting, balancedividend,

Hposeidon(childNode1),Hposeidon(childNode2)),

where balancemax is maximum balance logged in the segment, balancetransactional
is the balance permitted to be transaction with, balancevoting is the balance per-
mitted to be voted with, balancedividend is the dividend-eligible balance,Hposeidon(childNode1)
is the hash of the first child node and Hposeidon(childNode2) is the hash of the
second child node. If node is a leaf, then childNode1, childNode2 ∈ ∅.

Additionaly, Zedger incorporates some features from Phoenix to facilitate user-
to-user transfers. We define the following structures as part of Zedger:
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1. whitelistTreeposeidon is a Merkle Tree structure comprised of identities I ←
(R, pk), i.e. whitelistTreeposeidon ← MerkleTree[I].

2. memorySlotTreeposeidon is a Merkle Tree structure comprised of memory
slots M , which represent the roots for each account SMST along with
accompanying data, i.e. memorySlotTreeposeidon ← MerkleTree[M ].

3. coinTreeposeidon is a Merkle Tree structure comprised of coins C minted
equivalent to the value being sent when transferring an assets from user-
to-user, i.e. coinTreeposeidon ← MerkleTree[C]

4. memorySlotNullifierSet is a set of unique nullifiers νM corresponding to
consumed memory slots, i.e. memorySlotNullifierSet← Set[νM ]

5. coinNullifierSet is a set of unique nullifiers νC corresponding to consumed
coins, i.e. memorySlotNullifierSet← Set[νC ].

Zedger supports the following functions:

1. CREATE, enabling a whitelisted user to register a new account.

2. SEND, enabling a whitelisted user with an account to initiate a transfer
of an asset to another user.

3. ACCEPT, enabling a whitelisted receiver to accept the transfer prior to its
expiration.

4. SETTLE, enabling a whitelisted sender to update his balance in accordance
with the acceptance time of the transfer (if the transfer has been accepted).

5. CLAIM, enabling a whitelisted sender to claim the transfer previously ini-
tiated if not accepted by the sender prior to its expiration.

6. VOTE, enabling an eligible whitelisted user to vote on a predefined set of
subjects.

7. PUSH DIVIDEND, enabling a contract operator to push a dividend to an
eligible whitelisted user.

7.4 Rusk VM

We define Rusk VM, a WebAssembly-based virtual machine deployed in the 

DZCK protocol. The concrete protocol state transition function is in-
stantiated with Rusk VM. Every VM function is priced, meaning that there 

exists an internal abstract accounting currency called gas which is utilized to 

assign a cost to every VM function. As a result, Rusk VM is a quasi-Turing 

complete virtual machine, meaning that each state transition is computationally 

bounded to the maximum allocated gas. The computational bound represents 

a workaround to the halting problem [Tur37], which proves the impossibility of 

guaranteeing the termination of an execution in a Turing complete machine.
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Rusk VM inherits the majority of the native WASM OPCODEs (OPerational
CODEs) alongside the addition of a variety of host functions encompassing
cryptographic functionality, such as hashing, elliptic curve scalar multiplication
and point addition, signature verification and zero-knowledge proof verifica-
tion functions as well as the functionality exposing the protocol state, such as
contract storage read and write, current block height, current timestamp, etc.
Specifically, we define the state transition function as:

S(data, stateglobal)→ (state′global, bool),

where data is the state transition-initiating data included in the transaction
(i.e. Tx.stateTransitionInit) and stateglobal is the global state of the protocol at
the time of the beginning of the state transition exeuction:

stateglobal ← (stateTree, timestamp, height, seed, blockGasLimit, blockGasUsed,

contractsCreated,Tx.type,Tx.gasLimit),

where:

1. stateTree is a Merkle Tree comprised of contract accounts, i.e. stateTree←
MerkleTree[account, 32], where account← (codeHash, contractState), codeHash
is the hash of the contract code and contractState is a Merkle Tree com-
prised of the mapped contract storage values.

2. timestamp is the UNIX timestamp of the current block.

3. height is the height of the current block.

4. seed is the seed of the current epoch.

5. blockGasLimit is the gas limit of the current block.

6. blockGasUsed is the amount gas used in the current block.

7. contractsCreated is the amount of contracts created in the current block.

8. Tx.type is the transaction type of the state transition-initiating transac-
tion.

9. Tx.gasLimit is the gas limit defined in the state transition-initiating trans-
action.

Additionally, Rusk VM supports for efficient creation of zero-knowledge proof-
friendly Merkle Tree structures.
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7.5 Genesis Contracts

The DZCK protocol is instantiated with a set of 4 native contracts called 

Genesis Contracts. The Genesis Contracts are deployed in the genesis block,

meaning that every protocol participant running the DZCK protocol 

has the contracts natively deployed. We formally define the functionality of 

the Genesis Contracts in an iterative order in the following 4 subsections of the 

paper.

7.5.1 DZCK Contract

DZCK Contract ContractDZCK forms the backbone of the DZCK protocol.
The contract is responsible for the accounting of the native protocol asset called 

DZCK . DZCK is utilized as a Sybil-resistant participation token in SBA consen-
sus mechanism, as well as the medium for subsidizing computation costs of the 

consensus participants (i.e. medium for transaction fee payment). ContractDZCK  

utilizes Phoenix as the underlying transaction model. The ContractDZCK .FExecute 

function acts as the entry point to state transition initiation for non-Coinbase 

transactions. Specifically, ContractDZCK .FExecute function takes the following in-
put:

Inputs,Crossover?,Outputs,Fee, πplonk
execute, calldata,

where Inputs and Outputs are previously defined in the Phoenix section, Crossover 

is an optional entry represting a unique note acting as bridge for DZCK between 

the transactional and generalized compute layers, Fee is the fee allocated as a 

reimbursment for the transaction computation costs, πp
ex
lo
e
n
c
k
ute is a zero-knowledge 

proof attesting to the validity of the transaction and calldata is the data attached 

to the transaction enabling it to initiate a contract call. We define Crossover as:

Crossover← (c, denc),

where c is the commitment to the value v of DZCK being bridged and denc 

are the encrypted openings of commitment c to the derivative of Fee.pk. Fee is 

defined as:
Fee← (gasPrice, gasLimit, R, pk),

where gasPrice is the price per gas in DZCK , gasLimit is the maximum allowance
 of gas for the execution of said function call and (R, pk) is the stealth address
 to which a refund will be issued if the not all allocated gas is consumed. If, for
 some reason, a Crossover is not consumed during the exection of the call, then
 then an additional refund note is issued to (R, pk).

ContractDZCK .FExecute function requires the following steps to be amended to 

the zero-knowledge proof conditions outline in the Pheonix section:

1. Crossover.c = C(c, v),

2. fee = gasPrice× gasLimit,
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3. Step 10 to be substituted with vin − v − vout − fee.

In total, ContractDZCK is comprised of the following non-spurious functions:

1. FSendToContractTransparent, enabling a user to send DZCK in a transparent
form to a contract.

2. FSendToContractObfuscated, enabling a user to send DZCK in an obfuscated
form to a contract.

3. FWithdrawFromTransparent, enabling a contract to withdraw transparent DZCK 
to a user in an obfuscated form.

4. FWithdrawFromTransparentToContractTransparent, enabling a contract to withdraw

transparent DZCK to a contract in a transparent form.

5. FWithdrawFromTransparentToContractObfuscated, enabling a contract to withdraw trans-

parent DZCK to a contract in an obfuscated form.

6. FWithdrawFromObfuscated, enabling a contract to withdraw obfuscated DZCK 
to a user in an obfuscated form.

7. FWithdrawFromObfuscatedToContractTransparent, enabling a contract to withdraw ob-

fuscated DZCK to a contract in a transparent form.

8. FWithdrawFromObfuscatedToContractObfuscated, enabling a contract to withdraw ob-

fuscated DZCK to a contract in a transparent form.

9. FExecute, enabling a user to pay for the transaction fee, send DZCK to
another user and initiate a contract call.

7.5.2 Bid Contract

ContractBid is utilized to enable prospective Generators to lock their bids in or-
der to join the consensus, update the expiration height of their existing bids
and withdraw the said bids once the expiry height has elapsed.

ContractBid is comprised of the following functions:

1. FBid, enabling a prospective Generator to submit a bid.

2. FExtendBid, enabling an existing Generator to extend the bid expiration
block height.

3. FWithdrawBid, enabling a Generator with an expired bid to withdraw the
said bid.
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7.5.3 Stake Contract

ContractStake is utilized to enable prospective Provisioners to lock their stakes in
order to join the consensus, update the expiration height of their existing stakes
and withdraw the said stakes once the expiry height has elapsed. Additionally,
the contract enforces slashing, which enables any protocol participant to report
a Provisioner who has committed slashable offence and is consequently eligible
to have his/her stake revoked. The participant responsible for reporting the
offence of is eligible for a reward comprised of a portion of the slashed Provi-
sioner’s stake.

ContractStake is comprised of the following functions:

1. FStake, enabling a prospective Provisioner to submit a stake.

2. FExtendStake, enabling an existing Provisioner to extend the stake expiration
block height.

3. FWithdrawStake, enabling a Provisioner with an expired stake to withdraw
the said stake.

4. FSlash, enabling a user to report a slashable offence.

7.5.4 Reward Contract

ContractReward is utilized to distribute rewards to the Provisioners responsible for
the finalization of the blocks as well as to the Generators responsible for forging
the finalized blocks and enabling the Provisioners to withdraw their accrued
rewards.

ContractReward is comprised of the following functions:

1. FDistribute, enabling the leader for the round to distribute the rewards.

2. FWithdrawReward, enabling a Provisioner to withdraw the accrued rewards.

7.6 Kadcast

Kadcast [RT19] is a structured overlay network based on [MM02] utilized in 

the DZCK protocol. Kadcast handles the propagation of messages in 

the DZCK protocol. Kadcast’s message propagation function acts as a 

concrete instantiation of FPropagate defined in the previous section. For in-depth 

look into Kadcast, readers are referred to [RT19].

8 Concrete Protocol

In this section we define a real-life concrete protocol as PChain
real , instantiated with

chain Chain. The protocol is assumed to be instantiated with Segregated Byzan-
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tine Agreement consensus mechanism, Kadcast, Rusk VM and the Genesis Con-
tracts. We also assume that the protocol participants have loosely synchronized
internal clocks with a permitted clock drift of ∆clock.

Chain is defined as a set of blocks iteratively bounded to each other in a de-
scending order via hashing. Once a block is added to the chain, the said block
is considered to be irreversible (i.e. final). Formally, the chain is defined as
Chain ← Set[Block], where for a random block index r ←$ (mod |Chain|) the
following condition holds:

(PreviousBlockHash(Chain[r]) = Hblake2b(Chain[r − 1].Header))∧

∧(Height(Chain[r]) = Height(Chain[r − 1]) + 1),

where PreviousBlockHash() is a function that returns the previousBlockHash en-
try for the corresponding block, and Height() is a function that returns the height
entry for the corresponding block. We define Chain[0] as a special block called
genesis block for which PreviousBlockHash(Chain[0]) = 0 holds true. Genesis
block is instantiated with the Genesis Contracts, has predefined Generators and
Provisioners sets as well as hardcoded seed0 and seed1 for corresponding epoch
0 and 1.

Block in P real
Chain is comprised of the metadata called header, body composed of a

set of transactions bundled into the respective block and the certificate attesting
to the validity of Block. In other words, the block Block is defined as:

Block← (Header,Body,Certificate).

The Header is denoted as:

Header← (version, height, timestamp, previousBlockHash, seed, blockReward,TxRoot, stateRoot),

where version is the version of the corresponding Block, Block.Header.height ←
Chain.Index(Block), timestamp is the time of the corresponding Block generation
in Unix time, Block.Header.previousBlockHash← Hblake2b(Chain[Block.Header.height−
1].Header), seed, blockReward is the cumulative reward to be distributed to the
consensus protocol.

Certificate is defined as: Certificate← (round, step, πscore
plonk, score, σBLS

agg , validatorSeqF),
where round is the block height for which the certificate was produced, step is
the first step of the Reduction phase of the successful iteration of the consensus,
(πscore

plonk, score) are the entries attesting to the validity of the score of the Gen-
erator responsible for the production of the candidate block corresponding to
the finalized block for round round, σBLS

agg is the aggregated BLS signature of the
committee validators of the successful iteration of the consensus for round round
attesting to the validity of the finalized block and validatorSeqF is a binary map-
ping corresponding to the validators in each of three respective committees who
had their signatures aggregated into σBLS

agg . Certificates are constructed locally
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for every consensus participant, meaning that there exists no uniform certificate
for a consensus round.

We define a transaction Tx as:

Tx← (version, type, stateTransitionInit),

where version is the transaction version, type is the transaction type and
stateTransitionInit is the data responsible for the initialization of state transi-
tions.

We define a Coinbase transaction Txcoinbase as a transaction responsible for
distributing the rewards to the consensus participants who have successfully
attested to the validity of the block. Coinbase transaction is always included as
the last transaction in the block and is defined as Tx.type = 0. State transition
initialization data for a Coinbase transaction is defined as:

Txcoinbase.stateTransitionInit← (notetransparent, provisionerReward, validatorSet),

where notetransparent is the reward payment to Generator responsible for forging
the finalized block for the corresponding round, provisionerReward is the total
reward to payed out to the Provisioners responsible for successfully validating
the block for the corresponding round and validatorSet is a set Provisioner pub-
lic keys corresponding to the Provisioners responsible for successfully finalizing
the block for round − 1. Coinbase transaction stateTransitionInit data is passed
through the ContractReward.FDistribute function, i.e.
ContractReward.FDistribute(stateTransitionInit).

The other transaction type is called Standard transaction Txstandard. Standard
transaction is defined as Tx.type = 1. State transition initialization data for a
Standard transaction is defined as:

Txstandard.stateTransitionInit← (Inputs,Crossover,Outputs,Feeπscore
execute, calldata),

where Inputs is a set of inputs being spent in Txstandard, Crossover is a unique 

note type acting as bridge for DZCK between the transactional and general 

compute layer, Outputs is a set of outputs being created, Fee is the fee allocated 

as a reimbursment for the transaction computation costs and calldata is the data 

attached to the transaction enabling it to initiate a contract call. The first 32 

bytes of calldata (calldata[0 : 32]) are required to denote a contract address. If 

calldata[0 : 32] = 0, then the transaction is treated as a contract creation trans-
action.

We define the contract address as

contractAddress← Hblake2b(contractCode||stateglobal.height||stateglobal.contractsCreated),

where contractCode is the code of the contract being instantiated, stateglobal.height
is the current height of PChain

real and stateglobal.contractsCreated is the total number
of contracts created during the current block.
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9 Related Works

Bitcoin [Nak08] introduces the notion of a blockchain as well as the Nakamoto
consensus mechanism. An alternative mechanism known as Proof-of-Stake is
subsequently proposed by [KN12]. Numerous other works build upon the con-
cept introduced in [KN12] to instantiate variations of Proof-of-Stake-based pro-
tocols such as [Ben+14b; Goo14; DPS16; Mic16; Kia+17; Dav+18; GOT19;
Ker+19; But+20]. Related to the work introduced in this paper is [Mic16],
which expands on [TA84; Mic17] to create the first permission-less Proof-of-
Stake-based protocol with a negligible probability of a fork.

Monero, the largest privacy-preserving digital currency based on the market
capitalization2 at the time of the publication of this paper, was originally based
on [Sab13], before being amended with [Max15; Bac15; NMM16] and later with
a novel zero-knowledge proof scheme called Bulletproofs [Bun+18]. Zcash, the
second largest privacy-preserving digital currency based on market capitaliza-
tion, proposed in [Ben+14a], utilizes [Gro16] zk-SNARK (zero-knowledge Suc-
cinct Non-Interative ARgument of Knowledge) proof system in conjuction with
a UTxO-based transaction model specified in [Hop+21]. Alternatively, Firo
(formerly known as Zcoin) utilizes a different transaction model called Lelantus
[Jiv19]. Additionally, [Fau+18] and subsequently [Gua+20] posit two different
approaches to creation of a privacy-preserving account model.

[Bun+19] proposes a notion of privacy-preserving token contracts, emulating
the transaction model proposed in [Hop+21] in an Ethereum smart contract.
[PSS19] builds on the approach discussed in [Bun+19] to enable private trans-
actions on Ethereum mainnet.

Other protocols, such as [Goo14; Dos+20; Fou20] propose solutions to create
compliant security token frameworks. [Goo14] adapts the transaction model in-
troduced in [Hop+21], making limited anonymity-preserving functionality avail-
able to the smart contract layer of Tezos. Polymath, after initially launching
as an Ethereum-based protocol, subsequently switched to developing a sepa-
rate protocol called Polymesh [Dos+20], which natively supports a restricted
set of privacy-preserving functions, while other features are perfomed off-chain.
[Fou20] introduces a protocol with a two-channel consensus mechanism com-
prised of a Proof-of-Stake-based optimistic channel and federated BFT-based
fallback channel. Findora supports limited privacy-preserving functionality on-
chain.

10 Conclusion

In this paper, we have established the requirements for a protocol in Section 5 

and subsequently formalized a concrete instantiation of the protocol called DZC
K 2
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Network around the aforementioned requirements. The concrete protocol was
instantiated with a novel permission-less Proof-of-Stake-based consensus mech-
anism called Segregated Byzantine Agreement, featuring a privacy-preserving
leader extraction procedure called Proof-of-Blind Bid, as well as with two novel
transaction models: Phoenix, a UTxO-based transaction model enabling the
confidential spending of non-obfuscated outputs and Zedger, a hybrid trans-
action model designed with regulatory compliance in regards to security tok-
enization and lifecycle management in mind. Additionally, we established a new
WebAssembly-based virtual machine called Rusk VM, which includes the native
support for cryptographic primitives such as zero-knowledge proof verification,
as well as an efficient approach to creating Merkle Tree inside contract storage.
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